Hilbert spaces of analytic functions of infinitely many variables
O. V. Lopushansky ; A. V. Zagorodnyuk
Annales Polonici Mathematici, Tome 81 (2003), p. 111-122 / Harvested from The Polish Digital Mathematics Library

We study spaces of analytic functions generated by homogeneous polynomials from the dual space to the symmetric Hilbertian tensor product of a Hilbert space. In particular, we introduce an analogue of the classical Hardy space H² on the Hilbert unit ball and investigate spectral decomposition of unitary operators on this space. Also we prove a Wiener-type theorem for an algebra of analytic functions on the Hilbert unit ball.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:280391
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap81-2-2,
     author = {O. V. Lopushansky and A. V. Zagorodnyuk},
     title = {Hilbert spaces of analytic functions of infinitely many variables},
     journal = {Annales Polonici Mathematici},
     volume = {81},
     year = {2003},
     pages = {111-122},
     zbl = {1036.46030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap81-2-2}
}
O. V. Lopushansky; A. V. Zagorodnyuk. Hilbert spaces of analytic functions of infinitely many variables. Annales Polonici Mathematici, Tome 81 (2003) pp. 111-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap81-2-2/