Sharp geometrical lower and upper estimates are obtained for the Bergman kernel on the diagonal of a convex domain D ⊂ ℂⁿ which does not contain complex lines. It is also proved that the ratio of the Bergman and Carathéodory metrics of D does not exceed a constant depending only on n.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap81-1-6,
author = {Nikolai Nikolov and Peter Pflug},
title = {Estimates for the Bergman kernel and metric of convex domains in Cn},
journal = {Annales Polonici Mathematici},
volume = {81},
year = {2003},
pages = {73-78},
zbl = {1022.32001},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap81-1-6}
}
Nikolai Nikolov; Peter Pflug. Estimates for the Bergman kernel and metric of convex domains in ℂⁿ. Annales Polonici Mathematici, Tome 81 (2003) pp. 73-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap81-1-6/