Approximation results for nonlinear integral operators in modular spaces and applications
Ilaria Mantellini ; Gianluca Vinti
Annales Polonici Mathematici, Tome 81 (2003), p. 55-71 / Harvested from The Polish Digital Mathematics Library

We obtain modular convergence theorems in modular spaces for nets of operators of the form (Twf)(s)=HKw(s-hw(t),f(hw(t)))dμH(t), w > 0, s ∈ G, where G and H are topological groups and hww>0 is a family of homeomorphisms hw:Hhw(H)G. Such operators contain, in particular, a nonlinear version of the generalized sampling operators, which have many applications in the theory of signal processing.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:280206
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap81-1-5,
     author = {Ilaria Mantellini and Gianluca Vinti},
     title = {Approximation results for nonlinear integral operators in modular spaces and applications},
     journal = {Annales Polonici Mathematici},
     volume = {81},
     year = {2003},
     pages = {55-71},
     zbl = {1019.41013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap81-1-5}
}
Ilaria Mantellini; Gianluca Vinti. Approximation results for nonlinear integral operators in modular spaces and applications. Annales Polonici Mathematici, Tome 81 (2003) pp. 55-71. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap81-1-5/