We describe a series of Calabi-Yau manifolds which are cyclic coverings of a Fano 3-fold branched along a smooth divisor. For all the examples we compute the Euler characteristic and the Hodge numbers. All examples have small Picard number .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-9, author = {S\l awomir Cynk}, title = {Cyclic coverings of Fano threefolds}, journal = {Annales Polonici Mathematici}, volume = {81}, year = {2003}, pages = {117-124}, zbl = {1015.14008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-9} }
Sławomir Cynk. Cyclic coverings of Fano threefolds. Annales Polonici Mathematici, Tome 81 (2003) pp. 117-124. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-9/