We describe a series of Calabi-Yau manifolds which are cyclic coverings of a Fano 3-fold branched along a smooth divisor. For all the examples we compute the Euler characteristic and the Hodge numbers. All examples have small Picard number .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-9,
author = {S\l awomir Cynk},
title = {Cyclic coverings of Fano threefolds},
journal = {Annales Polonici Mathematici},
volume = {81},
year = {2003},
pages = {117-124},
zbl = {1015.14008},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-9}
}
Sławomir Cynk. Cyclic coverings of Fano threefolds. Annales Polonici Mathematici, Tome 81 (2003) pp. 117-124. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-9/