Given a compact set , for each positive integer n, let = := sup: p holomorphic polynomial, 1 ≤ deg p ≤ n. These “extremal-like” functions are essentially one-variable in nature and always increase to the “true” several-variable (Siciak) extremal function, := max[0, sup1/(deg p) log|p(z)|: p holomorphic polynomial, ]. Our main result is that if K is regular, then all of the functions are continuous; and their associated Robin functions increase to for all z outside a pluripolar set.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-4, author = {T. Bloom and N. Levenberg and S. Ma'u}, title = {Robin functions and extremal functions}, journal = {Annales Polonici Mathematici}, volume = {81}, year = {2003}, pages = {55-84}, zbl = {1031.31004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-4} }
T. Bloom; N. Levenberg; S. Ma'u. Robin functions and extremal functions. Annales Polonici Mathematici, Tome 81 (2003) pp. 55-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-4/