Robin functions and extremal functions
T. Bloom ; N. Levenberg ; S. Ma'u
Annales Polonici Mathematici, Tome 81 (2003), p. 55-84 / Harvested from The Polish Digital Mathematics Library

Given a compact set KN, for each positive integer n, let V(n)(z) = VK(n)(z) := sup1/(degp)Vp(K)(p(z)): p holomorphic polynomial, 1 ≤ deg p ≤ n. These “extremal-like” functions VK(n) are essentially one-variable in nature and always increase to the “true” several-variable (Siciak) extremal function, VK(z):= max[0, sup1/(deg p) log|p(z)|: p holomorphic polynomial, ||p||K1]. Our main result is that if K is regular, then all of the functions VK(n) are continuous; and their associated Robin functions ϱVK(n)(z):=limsup|λ|[VK(n)(λz)-log(|λ|)] increase to ϱK:=ϱVK for all z outside a pluripolar set.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:286634
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-4,
     author = {T. Bloom and N. Levenberg and S. Ma'u},
     title = {Robin functions and extremal functions},
     journal = {Annales Polonici Mathematici},
     volume = {81},
     year = {2003},
     pages = {55-84},
     zbl = {1031.31004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-4}
}
T. Bloom; N. Levenberg; S. Ma'u. Robin functions and extremal functions. Annales Polonici Mathematici, Tome 81 (2003) pp. 55-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-4/