We present a multidimensional analogue of an inequality by van der Corput-Visser concerning the coefficients of a real trigonometric polynomial. As an application, we obtain an improved estimate from below of the Bohr radius for the hypercone 𝓓₁ⁿ = {z ∈ ℂⁿ: |z₁|+. .. +|zₙ| < 1} when 3 ≤ n ≤ 10.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-3, author = {L. Aizenberg and E. Liflyand and A. Vidras}, title = {Multidimensional analogue of the van der Corput-Visser inequality and its application to the estimation of the Bohr radius}, journal = {Annales Polonici Mathematici}, volume = {81}, year = {2003}, pages = {47-54}, zbl = {1061.32001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-3} }
L. Aizenberg; E. Liflyand; A. Vidras. Multidimensional analogue of the van der Corput-Visser inequality and its application to the estimation of the Bohr radius. Annales Polonici Mathematici, Tome 81 (2003) pp. 47-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-3/