We give a relation between two theories of improper intersections, of Tworzewski and of Stückrad-Vogel, for the case of algebraic curves. Given two arbitrary quasiprojective curves V₁,V₂, the intersection cycle V₁ ∙ V₂ in the sense of Tworzewski turns out to be the rational part of the Vogel cycle v(V₁,V₂). We also give short proofs of two known effective formulae for the intersection cycle V₁ ∙ V₂ in terms of local parametrizations of the curves.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-16,
author = {Tadeusz Krasi\'nski and Krzysztof Jan Nowak},
title = {Intersection of analytic curves},
journal = {Annales Polonici Mathematici},
volume = {81},
year = {2003},
pages = {193-202},
zbl = {1073.14505},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-16}
}
Tadeusz Krasiński; Krzysztof Jan Nowak. Intersection of analytic curves. Annales Polonici Mathematici, Tome 81 (2003) pp. 193-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-16/