We give a relation between two theories of improper intersections, of Tworzewski and of Stückrad-Vogel, for the case of algebraic curves. Given two arbitrary quasiprojective curves V₁,V₂, the intersection cycle V₁ ∙ V₂ in the sense of Tworzewski turns out to be the rational part of the Vogel cycle v(V₁,V₂). We also give short proofs of two known effective formulae for the intersection cycle V₁ ∙ V₂ in terms of local parametrizations of the curves.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-16, author = {Tadeusz Krasi\'nski and Krzysztof Jan Nowak}, title = {Intersection of analytic curves}, journal = {Annales Polonici Mathematici}, volume = {81}, year = {2003}, pages = {193-202}, zbl = {1073.14505}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-16} }
Tadeusz Krasiński; Krzysztof Jan Nowak. Intersection of analytic curves. Annales Polonici Mathematici, Tome 81 (2003) pp. 193-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-16/