An extension theorem for separately holomorphic functions with analytic singularities
Marek Jarnicki ; Peter Pflug
Annales Polonici Mathematici, Tome 81 (2003), p. 143-161 / Harvested from The Polish Digital Mathematics Library

Let Djkj be a pseudoconvex domain and let AjDj be a locally pluriregular set, j = 1,...,N. Put X:=j=1NA×...×Aj-1×Dj×Aj+1×...×ANk+...+kN. Let U be an open connected neighborhood of X and let M ⊊ U be an analytic subset. Then there exists an analytic subset M̂ of the “envelope of holomorphy” X̂ of X with M̂ ∩ X ⊂ M such that for every function f separately holomorphic on X∖M there exists an f̂ holomorphic on X̂∖M̂ with f̂|XM=f. The result generalizes special cases which were studied in [Ökt 1998], [Ökt 1999], [Sic 2001], and [Jar-Pfl 2001].

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:281010
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-12,
     author = {Marek Jarnicki and Peter Pflug},
     title = {An extension theorem for separately holomorphic functions with analytic singularities},
     journal = {Annales Polonici Mathematici},
     volume = {81},
     year = {2003},
     pages = {143-161},
     zbl = {1023.32001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-12}
}
Marek Jarnicki; Peter Pflug. An extension theorem for separately holomorphic functions with analytic singularities. Annales Polonici Mathematici, Tome 81 (2003) pp. 143-161. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap80-0-12/