Existence of positive solutions for second order m-point boundary value problems
Ruyun Ma
Annales Polonici Mathematici, Tome 79 (2002), p. 265-276 / Harvested from The Polish Digital Mathematics Library

Let α,β,γ,δ ≥ 0 and ϱ:= γβ + αγ + αδ > 0. Let ψ(t) = β + αt, ϕ(t) = γ + δ - γt, t ∈ [0,1]. We study the existence of positive solutions for the m-point boundary value problem ⎧u” + h(t)f(u) = 0, 0 < t < 1, ⎨αu(0)-βu'(0)=i=1m-2aiu(ξi)γu(1)+δu'(1)=i=1m-2biu(ξi), where ξi(0,1), ai,bi(0,) (for i ∈ 1,…,m-2) are given constants satisfying ϱ-i=1m-2aiϕ(ξi)>0, ϱ-i=1m-2biψ(ξi)>0 and Δ:=-i=1m-2aiψ(ξi)ϱ-i=1m-2aiϕ(ξi)ϱ-i=1m-2biψ(ξi)-i=1m-2biϕ(ξi)<0. We show the existence of positive solutions if f is either superlinear or sublinear by a simple application of a fixed point theorem in cones. Our result extends a result established by Erbe and Wang for two-point BVPs and a result established by the author for three-point BVPs.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:280757
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-3-4,
     author = {Ruyun Ma},
     title = {Existence of positive solutions for second order m-point boundary value problems},
     journal = {Annales Polonici Mathematici},
     volume = {79},
     year = {2002},
     pages = {265-276},
     zbl = {1055.34025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-3-4}
}
Ruyun Ma. Existence of positive solutions for second order m-point boundary value problems. Annales Polonici Mathematici, Tome 79 (2002) pp. 265-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-3-4/