Proper holomorphic self-mappings of the minimal ball
Nabil Ourimi
Annales Polonici Mathematici, Tome 79 (2002), p. 97-107 / Harvested from The Polish Digital Mathematics Library

The purpose of this paper is to prove that proper holomorphic self-mappings of the minimal ball are biholomorphic. The proof uses the scaling technique applied at a singular point and relies on the fact that a proper holomorphic mapping f: D → Ω with branch locus Vf is factored by automorphisms if and only if f*(π(Df-1(f(Vf)),x)) is a normal subgroup of π(Ωf(Vf),b) for some bΩf(Vf) and xf-1(b).

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:280338
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-2-1,
     author = {Nabil Ourimi},
     title = {Proper holomorphic self-mappings of the minimal ball},
     journal = {Annales Polonici Mathematici},
     volume = {79},
     year = {2002},
     pages = {97-107},
     zbl = {1020.32013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-2-1}
}
Nabil Ourimi. Proper holomorphic self-mappings of the minimal ball. Annales Polonici Mathematici, Tome 79 (2002) pp. 97-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-2-1/