In the recent years, many results have been established on positive solutions for boundary value problems of the form in Ω, u(x)=0 on ∂Ω, where λ > 0, Ω is a bounded smooth domain and f(s) ≥ 0 for s ≥ 0. In this paper, a priori estimates of positive radial solutions are presented when N > p > 1, Ω is an N-ball or an annulus and f ∈ C¹(0,∞) ∪ C⁰([0,∞)) with f(0) < 0 (non-positone).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-7, author = {Zuodong Yang and Qishao Lu}, title = {Asymptotics for quasilinear elliptic non-positone problems}, journal = {Annales Polonici Mathematici}, volume = {79}, year = {2002}, pages = {85-95}, zbl = {1130.35343}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-7} }
Zuodong Yang; Qishao Lu. Asymptotics for quasilinear elliptic non-positone problems. Annales Polonici Mathematici, Tome 79 (2002) pp. 85-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-7/