Concave domains with trivial biholomorphic invariants
Witold Jarnicki ; Nikolai Nikolov
Annales Polonici Mathematici, Tome 79 (2002), p. 63-66 / Harvested from The Polish Digital Mathematics Library

It is proved that if F is a convex closed set in ℂⁿ, n ≥2, containing at most one (n-1)-dimensional complex hyperplane, then the Kobayashi metric and the Lempert function of ℂⁿ∖ F identically vanish.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:280509
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-5,
     author = {Witold Jarnicki and Nikolai Nikolov},
     title = {Concave domains with trivial biholomorphic invariants},
     journal = {Annales Polonici Mathematici},
     volume = {79},
     year = {2002},
     pages = {63-66},
     zbl = {1019.32012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-5}
}
Witold Jarnicki; Nikolai Nikolov. Concave domains with trivial biholomorphic invariants. Annales Polonici Mathematici, Tome 79 (2002) pp. 63-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-5/