It is proved that if F is a convex closed set in ℂⁿ, n ≥2, containing at most one (n-1)-dimensional complex hyperplane, then the Kobayashi metric and the Lempert function of ℂⁿ∖ F identically vanish.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-5,
author = {Witold Jarnicki and Nikolai Nikolov},
title = {Concave domains with trivial biholomorphic invariants},
journal = {Annales Polonici Mathematici},
volume = {79},
year = {2002},
pages = {63-66},
zbl = {1019.32012},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-5}
}
Witold Jarnicki; Nikolai Nikolov. Concave domains with trivial biholomorphic invariants. Annales Polonici Mathematici, Tome 79 (2002) pp. 63-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-5/