We consider the stochastic differential equation (1) for t ≥ 0 with the initial condition u(0) = x₀. We give sufficient conditions for the existence of an invariant measure for the semigroup corresponding to (1). We show that the existence of an invariant measure for a Markov operator P corresponding to the change of measures from jump to jump implies the existence of an invariant measure for the semigroup describing the evolution of measures along trajectories and vice versa.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-3, author = {Katarzyna Horbacz}, title = {Invariant measures related with randomly connected Poisson driven differential equations}, journal = {Annales Polonici Mathematici}, volume = {79}, year = {2002}, pages = {31-44}, zbl = {1011.60036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-3} }
Katarzyna Horbacz. Invariant measures related with randomly connected Poisson driven differential equations. Annales Polonici Mathematici, Tome 79 (2002) pp. 31-44. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-3/