Invariant measures related with randomly connected Poisson driven differential equations
Katarzyna Horbacz
Annales Polonici Mathematici, Tome 79 (2002), p. 31-44 / Harvested from The Polish Digital Mathematics Library

We consider the stochastic differential equation (1) du(t)=a(u(t),ξ(t))dt+Θσ(u(t),θ)p(dt,dθ) for t ≥ 0 with the initial condition u(0) = x₀. We give sufficient conditions for the existence of an invariant measure for the semigroup Ptt0 corresponding to (1). We show that the existence of an invariant measure for a Markov operator P corresponding to the change of measures from jump to jump implies the existence of an invariant measure for the semigroup Ptt0 describing the evolution of measures along trajectories and vice versa.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:280654
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-3,
     author = {Katarzyna Horbacz},
     title = {Invariant measures related with randomly connected Poisson driven differential equations},
     journal = {Annales Polonici Mathematici},
     volume = {79},
     year = {2002},
     pages = {31-44},
     zbl = {1011.60036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-3}
}
Katarzyna Horbacz. Invariant measures related with randomly connected Poisson driven differential equations. Annales Polonici Mathematici, Tome 79 (2002) pp. 31-44. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap79-1-3/