We introduce the notion of uniform quietness at zero for a real-valued function and we study one-parameter nonlocal boundary value problems for second order differential equations involving such functions. By using the Krasnosel'skiĭ fixed point theorem in a cone, we give values of the parameter for which the problems have at least two positive solutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-5, author = {G. L. Karakostas and P. Ch. Tsamatos}, title = {Functions uniformly quiet at zero and existence results for one-parameter boundary value problems}, journal = {Annales Polonici Mathematici}, volume = {79}, year = {2002}, pages = {267-276}, zbl = {1002.34014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-5} }
G. L. Karakostas; P. Ch. Tsamatos. Functions uniformly quiet at zero and existence results for one-parameter boundary value problems. Annales Polonici Mathematici, Tome 79 (2002) pp. 267-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-5/