Functions uniformly quiet at zero and existence results for one-parameter boundary value problems
G. L. Karakostas ; P. Ch. Tsamatos
Annales Polonici Mathematici, Tome 79 (2002), p. 267-276 / Harvested from The Polish Digital Mathematics Library

We introduce the notion of uniform quietness at zero for a real-valued function and we study one-parameter nonlocal boundary value problems for second order differential equations involving such functions. By using the Krasnosel'skiĭ fixed point theorem in a cone, we give values of the parameter for which the problems have at least two positive solutions.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:280649
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-5,
     author = {G. L. Karakostas and P. Ch. Tsamatos},
     title = {Functions uniformly quiet at zero and existence results for one-parameter boundary value problems},
     journal = {Annales Polonici Mathematici},
     volume = {79},
     year = {2002},
     pages = {267-276},
     zbl = {1002.34014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-5}
}
G. L. Karakostas; P. Ch. Tsamatos. Functions uniformly quiet at zero and existence results for one-parameter boundary value problems. Annales Polonici Mathematici, Tome 79 (2002) pp. 267-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-5/