We introduce the notion of uniform quietness at zero for a real-valued function and we study one-parameter nonlocal boundary value problems for second order differential equations involving such functions. By using the Krasnosel'skiĭ fixed point theorem in a cone, we give values of the parameter for which the problems have at least two positive solutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-5,
author = {G. L. Karakostas and P. Ch. Tsamatos},
title = {Functions uniformly quiet at zero and existence results for one-parameter boundary value problems},
journal = {Annales Polonici Mathematici},
volume = {79},
year = {2002},
pages = {267-276},
zbl = {1002.34014},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-5}
}
G. L. Karakostas; P. Ch. Tsamatos. Functions uniformly quiet at zero and existence results for one-parameter boundary value problems. Annales Polonici Mathematici, Tome 79 (2002) pp. 267-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-5/