The existence of solutions to the Dirichlet problem for the compressible linearized Navier-Stokes system is proved in a class such that the velocity vector belongs to with r > 3. The proof is done in two steps. First the existence for local problems with constant coefficients is proved by applying the Fourier transform. Next by applying the regularizer technique the existence in a bounded domain is shown.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-3, author = {Piotr Boguslaw Mucha and Wojciech Zaj\k aczkowski}, title = {On the existence for the Dirichlet problem for the compressible linearized Navier-Stokes system in the $L\_p$-framework}, journal = {Annales Polonici Mathematici}, volume = {79}, year = {2002}, pages = {241-260}, zbl = {0992.35064}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-3} }
Piotr Boguslaw Mucha; Wojciech Zajączkowski. On the existence for the Dirichlet problem for the compressible linearized Navier-Stokes system in the $L_p$-framework. Annales Polonici Mathematici, Tome 79 (2002) pp. 241-260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-3/