Derivees tangentielles des fonctions de la classe k,α dans les domaines de type fini de ℂ²
Laurent Verdoucq
Annales Polonici Mathematici, Tome 79 (2002), p. 193-225 / Harvested from The Polish Digital Mathematics Library

Let Ω be a domain of finite type in ℂ² and let f be a function holomorphic in Ω and belonging to k,α(Ω̅). We prove the existence of boundary values for some suitable derivatives of f of order greater than k. The gain of derivatives holds in the complex-tangential direction and it is precisely related to the geometry of ∂Ω. Then we prove a property of non-isotropic Hölder regularity for these boundary values. This generalizes some results given by J. Bruna and J. M. Ortega for the unit ball.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:280974
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-1,
     author = {Laurent Verdoucq},
     title = {Derivees tangentielles des fonctions de la classe $^{k,$\alpha$}$ dans les domaines de type fini de $\mathbb{C}$$^2$},
     journal = {Annales Polonici Mathematici},
     volume = {79},
     year = {2002},
     pages = {193-225},
     zbl = {0998.32003},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-1}
}
Laurent Verdoucq. Derivees tangentielles des fonctions de la classe $^{k,α}$ dans les domaines de type fini de ℂ². Annales Polonici Mathematici, Tome 79 (2002) pp. 193-225. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-3-1/