We investigate the existence of solutions of the Dirichlet problem for the differential inclusion for a.e. y ∈ Ω, which is a generalized Euler-Lagrange equation for the functional . We develop a duality theory and formulate the variational principle for this problem. As a consequence of duality, we derive the variational principle for minimizing sequences of J. We consider the case when G is subquadratic at infinity.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-2-4, author = {Aleksandra Orpel}, title = {The Dirichlet problem with sublinear nonlinearities}, journal = {Annales Polonici Mathematici}, volume = {79}, year = {2002}, pages = {131-140}, zbl = {0997.58005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-2-4} }
Aleksandra Orpel. The Dirichlet problem with sublinear nonlinearities. Annales Polonici Mathematici, Tome 79 (2002) pp. 131-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-2-4/