We study nontaut codimension one foliations on closed Riemannian manifolds. We find an estimate of some constant derived from the mean curvature function of the leaves of a foliation by some isoperimetric constant of the manifold. Moreover, for foliated 2-tori and the 3-dimensional unit sphere, we find the infimum of the former constants for all nontaut codimension one foliations.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-2-1, author = {Konrad Blachowski}, title = {Nontaut foliations and isoperimetric constants}, journal = {Annales Polonici Mathematici}, volume = {79}, year = {2002}, pages = {97-110}, zbl = {1005.53018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-2-1} }
Konrad Blachowski. Nontaut foliations and isoperimetric constants. Annales Polonici Mathematici, Tome 79 (2002) pp. 97-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-2-1/