We consider the systems of hyperbolic equations ⎧, t > 0, , (S1) ⎨ ⎩, t > 0, ⎧, t > 0, , (S2) ⎨ ⎩, t > 0, , (S3) ⎧, t > 0, , ⎨ ⎩, t > 0, , in with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-1-5, author = {Mokhtar Kirane and Salim Messaoudi}, title = {Nonexistence results for the Cauchy problem of some systems of hyperbolic equations}, journal = {Annales Polonici Mathematici}, volume = {79}, year = {2002}, pages = {39-47}, zbl = {0988.35115}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-1-5} }
Mokhtar Kirane; Salim Messaoudi. Nonexistence results for the Cauchy problem of some systems of hyperbolic equations. Annales Polonici Mathematici, Tome 79 (2002) pp. 39-47. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-1-5/