For complete Reinhardt pairs “compact set - domain” K ⊂ D in ℂⁿ, we prove Zahariuta’s conjecture about the exact asymptotics , s → ∞, for the Kolmogorov widths of the compact set in C(K) consisting of all analytic functions in D with moduli not exceeding 1 in D, τ(K,D) being the condenser pluricapacity of K with respect to D.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-1-4, author = {A. Aytuna and A. Rashkovskii and V. Zahariuta}, title = {Width asymptotics for a pair of Reinhardt domains}, journal = {Annales Polonici Mathematici}, volume = {79}, year = {2002}, pages = {31-38}, zbl = {1009.32002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-1-4} }
A. Aytuna; A. Rashkovskii; V. Zahariuta. Width asymptotics for a pair of Reinhardt domains. Annales Polonici Mathematici, Tome 79 (2002) pp. 31-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap78-1-4/