We describe homogeneous manifolds with generic Ricci tensor. We also prove that if 𝔤 is a 4-dimensional unimodular Lie algebra such that dim[𝔤,𝔤] ≤ 2 then every left-invariant metric on the Lie group G with Lie algebra 𝔤 admits two mutually opposite compatible left-invariant almost Kähler structures.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-3-6, author = {W\l odzimierz Jelonek}, title = {Homogeneous Riemannian manifolds with generic Ricci tensor}, journal = {Annales Polonici Mathematici}, volume = {77}, year = {2001}, pages = {271-287}, zbl = {1043.53042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-3-6} }
Włodzimierz Jelonek. Homogeneous Riemannian manifolds with generic Ricci tensor. Annales Polonici Mathematici, Tome 77 (2001) pp. 271-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-3-6/