Partial regularity of minimizers of quasiconvex integrals with subquadratic growth: the general case
Menita Carozza ; Giuseppe Mingione
Annales Polonici Mathematici, Tome 77 (2001), p. 219-243 / Harvested from The Polish Digital Mathematics Library

We prove partial regularity for minimizers of the functional Ωf(x,u(x),Du(x))dx where the integrand f(x,u,ξ) is quasiconvex with subquadratic growth: |f(x,u,ξ)|L(1+|ξ|p), p < 2. We also obtain the same results for ω-minimizers.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:280357
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-3-3,
     author = {Menita Carozza and Giuseppe Mingione},
     title = {Partial regularity of minimizers of quasiconvex integrals with subquadratic growth: the general case},
     journal = {Annales Polonici Mathematici},
     volume = {77},
     year = {2001},
     pages = {219-243},
     zbl = {0988.49020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-3-3}
}
Menita Carozza; Giuseppe Mingione. Partial regularity of minimizers of quasiconvex integrals with subquadratic growth: the general case. Annales Polonici Mathematici, Tome 77 (2001) pp. 219-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-3-3/