We investigate the effect of the topology of the boundary ∂Ω and of the graph topology of the coefficient Q on the number of solutions of the nonlinear Neumann problem .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-2-2, author = {J. Chabrowski and Peter J. Watson and Jianfu Yang}, title = {On shape and multiplicity of solutions for a singularly perturbed Neumann problem}, journal = {Annales Polonici Mathematici}, volume = {77}, year = {2001}, pages = {119-159}, zbl = {0982.35035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-2-2} }
J. Chabrowski; Peter J. Watson; Jianfu Yang. On shape and multiplicity of solutions for a singularly perturbed Neumann problem. Annales Polonici Mathematici, Tome 77 (2001) pp. 119-159. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-2-2/