On shape and multiplicity of solutions for a singularly perturbed Neumann problem
J. Chabrowski ; Peter J. Watson ; Jianfu Yang
Annales Polonici Mathematici, Tome 77 (2001), p. 119-159 / Harvested from The Polish Digital Mathematics Library

We investigate the effect of the topology of the boundary ∂Ω and of the graph topology of the coefficient Q on the number of solutions of the nonlinear Neumann problem (1d).

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:280990
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-2-2,
     author = {J. Chabrowski and Peter J. Watson and Jianfu Yang},
     title = {On shape and multiplicity of solutions for a singularly perturbed Neumann problem},
     journal = {Annales Polonici Mathematici},
     volume = {77},
     year = {2001},
     pages = {119-159},
     zbl = {0982.35035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-2-2}
}
J. Chabrowski; Peter J. Watson; Jianfu Yang. On shape and multiplicity of solutions for a singularly perturbed Neumann problem. Annales Polonici Mathematici, Tome 77 (2001) pp. 119-159. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-2-2/