We study geometrical properties of natural transformations depending on a linear function defined on the Weil algebra A. We show that for many particular cases of A, all natural transformations can be described in a uniform way by means of a simple geometrical construction.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-2-1, author = {Miroslav Doupovec}, title = {Natural transformations of the composition of Weil and cotangent functors}, journal = {Annales Polonici Mathematici}, volume = {77}, year = {2001}, pages = {105-117}, zbl = {0990.58005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-2-1} }
Miroslav Doupovec. Natural transformations of the composition of Weil and cotangent functors. Annales Polonici Mathematici, Tome 77 (2001) pp. 105-117. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-2-1/