Existence and uniqueness of solutions of nonlinear infinite systems of parabolic differential-functional equations
Stanisław Brzychczy
Annales Polonici Mathematici, Tome 77 (2001), p. 1-9 / Harvested from The Polish Digital Mathematics Library

We consider the Fourier first initial-boundary value problem for an infinite system of weakly coupled nonlinear differential-functional equations of parabolic type. The right-hand sides of the system are functionals of unknown functions. The existence and uniqueness of the solution are proved by the Banach fixed point theorem.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:280521
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-1-1,
     author = {Stanis\l aw Brzychczy},
     title = {Existence and uniqueness of solutions of nonlinear infinite systems of parabolic differential-functional equations},
     journal = {Annales Polonici Mathematici},
     volume = {77},
     year = {2001},
     pages = {1-9},
     zbl = {0985.35099},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-1-1}
}
Stanisław Brzychczy. Existence and uniqueness of solutions of nonlinear infinite systems of parabolic differential-functional equations. Annales Polonici Mathematici, Tome 77 (2001) pp. 1-9. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap77-1-1/