The complex Monge-Ampère equation for complex homogeneous functions in ℂⁿ
Rafał Czyż
Annales Polonici Mathematici, Tome 77 (2001), p. 287-302 / Harvested from The Polish Digital Mathematics Library

We prove some existence results for the complex Monge-Ampère equation (ddcu)=gdλ in ℂⁿ in a certain class of homogeneous functions in ℂⁿ, i.e. we show that for some nonnegative complex homogeneous functions g there exists a plurisubharmonic complex homogeneous solution u of the complex Monge-Ampère equation.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:280997
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-3-7,
     author = {Rafa\l\ Czy\.z},
     title = {The complex Monge-Ampere equation for complex homogeneous functions in Cn},
     journal = {Annales Polonici Mathematici},
     volume = {77},
     year = {2001},
     pages = {287-302},
     zbl = {0976.32023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-3-7}
}
Rafał Czyż. The complex Monge-Ampère equation for complex homogeneous functions in ℂⁿ. Annales Polonici Mathematici, Tome 77 (2001) pp. 287-302. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-3-7/