We prove some existence results for the complex Monge-Ampère equation in ℂⁿ in a certain class of homogeneous functions in ℂⁿ, i.e. we show that for some nonnegative complex homogeneous functions g there exists a plurisubharmonic complex homogeneous solution u of the complex Monge-Ampère equation.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-3-7, author = {Rafa\l\ Czy\.z}, title = {The complex Monge-Ampere equation for complex homogeneous functions in Cn}, journal = {Annales Polonici Mathematici}, volume = {77}, year = {2001}, pages = {287-302}, zbl = {0976.32023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-3-7} }
Rafał Czyż. The complex Monge-Ampère equation for complex homogeneous functions in ℂⁿ. Annales Polonici Mathematici, Tome 77 (2001) pp. 287-302. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-3-7/