A monotone method for constructing extremal solutions to second order periodic boundary value problems
Daqing Jiang ; Lingbin Kong
Annales Polonici Mathematici, Tome 77 (2001), p. 279-286 / Harvested from The Polish Digital Mathematics Library

We describe a constructive method which yields two monotone sequences that converge uniformly to extremal solutions to the periodic boundary value problem u''(t) = f(t,u(t),u'(t)), u(0) = u(2π), u'(0) = u'(2π) in the presence of a lower solution α(t) and an upper solution β(t) with β(t) ≤ α(t).

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:280753
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-3-6,
     author = {Daqing Jiang and Lingbin Kong},
     title = {A monotone method for constructing extremal solutions to second order periodic boundary value problems},
     journal = {Annales Polonici Mathematici},
     volume = {77},
     year = {2001},
     pages = {279-286},
     zbl = {0982.34012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-3-6}
}
Daqing Jiang; Lingbin Kong. A monotone method for constructing extremal solutions to second order periodic boundary value problems. Annales Polonici Mathematici, Tome 77 (2001) pp. 279-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-3-6/