On locally bounded solutions of Schilling's problem
Janusz Morawiec
Annales Polonici Mathematici, Tome 77 (2001), p. 169-188 / Harvested from The Polish Digital Mathematics Library

We prove that for some parameters q ∈ (0,1) every solution f:ℝ → ℝ of the functional equation f(qx) = 1/(4q) [f(x-1) + f(x+1) + 2f(x)] which vanishes outside the interval [-q/(1-q),q/(1-q)] and is bounded in a neighbourhood of a point of that interval vanishes everywhere.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:280686
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-3-1,
     author = {Janusz Morawiec},
     title = {On locally bounded solutions of Schilling's problem},
     journal = {Annales Polonici Mathematici},
     volume = {77},
     year = {2001},
     pages = {169-188},
     zbl = {0980.39013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-3-1}
}
Janusz Morawiec. On locally bounded solutions of Schilling's problem. Annales Polonici Mathematici, Tome 77 (2001) pp. 169-188. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-3-1/