We construct and study length 2 variables of A[x,y] (A is a commutative ring). If A is an integral domain, we determine among these variables those which are tame. If A is a UFD, we prove that these variables are all stably tame. We apply this construction to show that some polynomials of A[x₁,...,xₙ] are variables using transfer.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-1-6,
author = {Eric Edo and St\'ephane V\'en\'ereau},
title = {Length 2 variables of A[x,y] and transfer},
journal = {Annales Polonici Mathematici},
volume = {77},
year = {2001},
pages = {67-76},
zbl = {0989.13013},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-1-6}
}
Eric Edo; Stéphane Vénéreau. Length 2 variables of A[x,y] and transfer. Annales Polonici Mathematici, Tome 77 (2001) pp. 67-76. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-1-6/