An algorithm is described which computes generators of the kernel of derivations on k[X₁,...,Xₙ] up to a previously given bound. For w-homogeneous derivations it is shown that if the algorithm computes a generating set for the kernel then this set is minimal.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-1-15,
author = {Stefan Maubach},
title = {An algorithm to compute the kernel of a derivation up to a certain degree},
journal = {Annales Polonici Mathematici},
volume = {77},
year = {2001},
pages = {147-158},
zbl = {0978.13015},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-1-15}
}
Stefan Maubach. An algorithm to compute the kernel of a derivation up to a certain degree. Annales Polonici Mathematici, Tome 77 (2001) pp. 147-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-1-15/