Let k be a commutative field. For any a,b∈ k, we denote by the deformation of the 2-dimensional Weyl algebra over k associated with the Jordanian Hecke symmetry with parameters a and b. We prove that: (i) any can be embedded in the usual Weyl algebra A₂(k), and (ii) is isomorphic to A₂(k) if and only if a = b.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-1-1,
author = {J. Alev and F. Dumas},
title = {Presentation jordanienne de l'algebre de Weyl A2},
journal = {Annales Polonici Mathematici},
volume = {77},
year = {2001},
pages = {1-9},
zbl = {0991.16020},
language = {fra},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-1-1}
}
J. Alev; F. Dumas. Présentation jordanienne de l'algèbre de Weyl A₂. Annales Polonici Mathematici, Tome 77 (2001) pp. 1-9. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap76-1-1/