A version of Michael's theorem for multivalued mappings definable in o-minimal structures with M-Lipschitz cell values (M a common constant) is proven. Uniform equi-LCⁿ property for such families of cells is checked. An example is given showing that the assumption about the common Lipschitz constant cannot be omitted.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap3931-7-2016, author = {Ma\l gorzata Czapla and Wies\l aw Paw\l ucki}, title = {Michael's theorem for Lipschitz cells in o-minimal structures}, journal = {Annales Polonici Mathematici}, volume = {116}, year = {2016}, pages = {101-107}, zbl = {06622309}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3931-7-2016} }
Małgorzata Czapla; Wiesław Pawłucki. Michael's theorem for Lipschitz cells in o-minimal structures. Annales Polonici Mathematici, Tome 116 (2016) pp. 101-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3931-7-2016/