We consider the axisymmetric Navier-Stokes equations with non-zero swirl component. By invoking the Hardy-Sobolev interpolation inequality, Hardy inequality and the theory of (1 < β < ∞) weights, we establish regularity criteria involving , or in some weighted Lebesgue spaces. This improves many previous results.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap3856-3-2016,
author = {Zujin Zhang},
title = {Remarks on regularity criteria for the Navier-Stokes equations with axisymmetric data},
journal = {Annales Polonici Mathematici},
volume = {116},
year = {2016},
pages = {181-196},
zbl = {06622314},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3856-3-2016}
}
Zujin Zhang. Remarks on regularity criteria for the Navier-Stokes equations with axisymmetric data. Annales Polonici Mathematici, Tome 116 (2016) pp. 181-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3856-3-2016/