Blow-up of a nonlocal p-Laplacian evolution equation with critical initial energy
Yang Liu ; Pengju Lv ; Chaojiu Da
Annales Polonici Mathematici, Tome 116 (2016), p. 89-99 / Harvested from The Polish Digital Mathematics Library

This paper is concerned with the initial boundary value problem for a nonlocal p-Laplacian evolution equation with critical initial energy. In the framework of the energy method, we construct an unstable set and establish its invariance. Finally, the finite time blow-up of solutions is derived by a combination of the unstable set and the concavity method.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286655
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap3807-1-2016,
     author = {Yang Liu and Pengju Lv and Chaojiu Da},
     title = {Blow-up of a nonlocal p-Laplacian evolution equation with critical initial energy},
     journal = {Annales Polonici Mathematici},
     volume = {116},
     year = {2016},
     pages = {89-99},
     zbl = {06602758},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3807-1-2016}
}
Yang Liu; Pengju Lv; Chaojiu Da. Blow-up of a nonlocal p-Laplacian evolution equation with critical initial energy. Annales Polonici Mathematici, Tome 116 (2016) pp. 89-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3807-1-2016/