This paper is concerned with the initial boundary value problem for a nonlocal p-Laplacian evolution equation with critical initial energy. In the framework of the energy method, we construct an unstable set and establish its invariance. Finally, the finite time blow-up of solutions is derived by a combination of the unstable set and the concavity method.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap3807-1-2016, author = {Yang Liu and Pengju Lv and Chaojiu Da}, title = {Blow-up of a nonlocal p-Laplacian evolution equation with critical initial energy}, journal = {Annales Polonici Mathematici}, volume = {116}, year = {2016}, pages = {89-99}, zbl = {06602758}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3807-1-2016} }
Yang Liu; Pengju Lv; Chaojiu Da. Blow-up of a nonlocal p-Laplacian evolution equation with critical initial energy. Annales Polonici Mathematici, Tome 116 (2016) pp. 89-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3807-1-2016/