We consider the following Kirchhoff type problem involving a critical nonlinearity: ⎧ in Ω, ⎨ ⎩ u = 0 on ∂Ω, where (N ≥ 3) is a smooth bounded domain with smooth boundary ∂Ω, a > 0, b ≥ 0, and 0 < m < 2/(N-2). Under appropriate assumptions on f, we show the existence of a positive ground state solution via the variational method.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap3783-1-2016, author = {Lan Zeng and Chun Lei Tang}, title = {Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent}, journal = {Annales Polonici Mathematici}, volume = {116}, year = {2016}, pages = {163-179}, zbl = {06622313}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3783-1-2016} }
Lan Zeng; Chun Lei Tang. Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent. Annales Polonici Mathematici, Tome 116 (2016) pp. 163-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3783-1-2016/