Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent
Lan Zeng ; Chun Lei Tang
Annales Polonici Mathematici, Tome 116 (2016), p. 163-179 / Harvested from The Polish Digital Mathematics Library

We consider the following Kirchhoff type problem involving a critical nonlinearity: ⎧ -[a+b(Ω|u|²dx)m]Δu=f(x,u)+|u|2*-2u in Ω, ⎨ ⎩ u = 0 on ∂Ω, where ΩN (N ≥ 3) is a smooth bounded domain with smooth boundary ∂Ω, a > 0, b ≥ 0, and 0 < m < 2/(N-2). Under appropriate assumptions on f, we show the existence of a positive ground state solution via the variational method.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286189
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap3783-1-2016,
     author = {Lan Zeng and Chun Lei Tang},
     title = {Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent},
     journal = {Annales Polonici Mathematici},
     volume = {116},
     year = {2016},
     pages = {163-179},
     zbl = {06622313},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3783-1-2016}
}
Lan Zeng; Chun Lei Tang. Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent. Annales Polonici Mathematici, Tome 116 (2016) pp. 163-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3783-1-2016/