We establish lower and upper eigenvalue estimates for Dirac operators in different settings, a new Kirchberg type estimate for the first eigenvalue of the Dirac operator on a compact Kähler spin manifold in terms of the energy momentum tensor, and an upper bound for the smallest eigenvalues of the twisted Dirac operator on Legendrian submanifolds of Sasakian manifolds. The sharpness of those estimates is also discussed.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap3779-2-2016, author = {Wenmin Gong and Guangcun Lu}, title = {Two new estimates for eigenvalues of Dirac operators}, journal = {Annales Polonici Mathematici}, volume = {116}, year = {2016}, pages = {109-126}, zbl = {06622310}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3779-2-2016} }
Wenmin Gong; Guangcun Lu. Two new estimates for eigenvalues of Dirac operators. Annales Polonici Mathematici, Tome 116 (2016) pp. 109-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3779-2-2016/