On the Bergman distance on model domains in ℂⁿ
Gregor Herbort
Annales Polonici Mathematici, Tome 116 (2016), p. 1-36 / Harvested from The Polish Digital Mathematics Library

Let P be a real-valued and weighted homogeneous plurisubharmonic polynomial in n-1 and let D denote the “model domain” z ∈ ℂⁿ | r(z):= Re z₁ + P(z’) < 0. We prove a lower estimate on the Bergman distance of D if P is assumed to be strongly plurisubharmonic away from the coordinate axes.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:281011
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap3752-12-2015,
     author = {Gregor Herbort},
     title = {On the Bergman distance on model domains in Cn},
     journal = {Annales Polonici Mathematici},
     volume = {116},
     year = {2016},
     pages = {1-36},
     zbl = {06545354},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3752-12-2015}
}
Gregor Herbort. On the Bergman distance on model domains in ℂⁿ. Annales Polonici Mathematici, Tome 116 (2016) pp. 1-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3752-12-2015/