Complete noncompact submanifolds with flat normal bundle
Hai-Ping Fu
Annales Polonici Mathematici, Tome 116 (2016), p. 145-154 / Harvested from The Polish Digital Mathematics Library

Let Mⁿ (n ≥ 3) be an n-dimensional complete super stable minimal submanifold in n+p with flat normal bundle. We prove that if the second fundamental form A of M satisfies Mi|A|α<, where α ∈ [2(1 - √(2/n)), 2(1 + √(2/n))], then M is an affine n-dimensional plane. In particular, if n ≤ 8 and M|A|d<, d = 1,3, then M is an affine n-dimensional plane. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite Lα-norm curvature in ℝ⁷ are considered.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:280710
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap3743-12-2015,
     author = {Hai-Ping Fu},
     title = {Complete noncompact submanifolds with flat normal bundle},
     journal = {Annales Polonici Mathematici},
     volume = {116},
     year = {2016},
     pages = {145-154},
     zbl = {1337.53079},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3743-12-2015}
}
Hai-Ping Fu. Complete noncompact submanifolds with flat normal bundle. Annales Polonici Mathematici, Tome 116 (2016) pp. 145-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3743-12-2015/