Let Mⁿ (n ≥ 3) be an n-dimensional complete super stable minimal submanifold in with flat normal bundle. We prove that if the second fundamental form A of M satisfies , where α ∈ [2(1 - √(2/n)), 2(1 + √(2/n))], then M is an affine n-dimensional plane. In particular, if n ≤ 8 and , d = 1,3, then M is an affine n-dimensional plane. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite -norm curvature in ℝ⁷ are considered.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap3743-12-2015, author = {Hai-Ping Fu}, title = {Complete noncompact submanifolds with flat normal bundle}, journal = {Annales Polonici Mathematici}, volume = {116}, year = {2016}, pages = {145-154}, zbl = {1337.53079}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3743-12-2015} }
Hai-Ping Fu. Complete noncompact submanifolds with flat normal bundle. Annales Polonici Mathematici, Tome 116 (2016) pp. 145-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3743-12-2015/