We study the existence of positive solutions of the quasilinear problem ⎧ , , ⎨ ⎩ u(x) > 0, , where is the N-Laplacian operator, is a continuous potential, is a continuous function. The main result follows from an iterative method based on Mountain Pass techniques.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap3664-1-2016, author = {Lin Chen and Caisheng Chen and Zonghu Xiu}, title = {Positive solution for a quasilinear equation with critical growth in $$\mathbb{R}$^N$ }, journal = {Annales Polonici Mathematici}, volume = {116}, year = {2016}, pages = {251-262}, zbl = {06586886}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3664-1-2016} }
Lin Chen; Caisheng Chen; Zonghu Xiu. Positive solution for a quasilinear equation with critical growth in $ℝ^N$ . Annales Polonici Mathematici, Tome 116 (2016) pp. 251-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3664-1-2016/