J. Bourgain, H. Brezis and P. Mironescu [in: J. L. Menaldi et al. (eds.), Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, 439-455] proved the following asymptotic formula: if is a smooth bounded domain, 1 ≤ p < ∞ and , then , where K is a constant depending only on p and d. The double integral on the left-hand side of the above formula is an equivalent seminorm in the Besov space . The purpose of this paper is to obtain analogous asymptotic formulae for some other equivalent seminorms, defined using coefficients of the expansion of f with respect to a wavelet or wavelet type basis. We cover both the case of the usual (isotropic) Besov and Sobolev spaces, and the Besov and Sobolev spaces with dominating mixed smoothness.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap3540-11-2015,
author = {Anna Kamont},
title = {Asymptotic behaviour of Besov norms via wavelet type basic expansions},
journal = {Annales Polonici Mathematici},
volume = {116},
year = {2016},
pages = {101-144},
zbl = {06574974},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3540-11-2015}
}
Anna Kamont. Asymptotic behaviour of Besov norms via wavelet type basic expansions. Annales Polonici Mathematici, Tome 116 (2016) pp. 101-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3540-11-2015/