Asymptotic behaviour of Besov norms via wavelet type basic expansions
Anna Kamont
Annales Polonici Mathematici, Tome 116 (2016), p. 101-144 / Harvested from The Polish Digital Mathematics Library

J. Bourgain, H. Brezis and P. Mironescu [in: J. L. Menaldi et al. (eds.), Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, 439-455] proved the following asymptotic formula: if Ωd is a smooth bounded domain, 1 ≤ p < ∞ and fW1,p(Ω), then lims1(1-s)ΩΩ(|f(x)-f(y)|p)/(||x-y||d+sp)dxdy=KΩ|f(x)|pdx, where K is a constant depending only on p and d. The double integral on the left-hand side of the above formula is an equivalent seminorm in the Besov space Bps,p(Ω). The purpose of this paper is to obtain analogous asymptotic formulae for some other equivalent seminorms, defined using coefficients of the expansion of f with respect to a wavelet or wavelet type basis. We cover both the case of the usual (isotropic) Besov and Sobolev spaces, and the Besov and Sobolev spaces with dominating mixed smoothness.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:280508
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap3540-11-2015,
     author = {Anna Kamont},
     title = {Asymptotic behaviour of Besov norms via wavelet type basic expansions},
     journal = {Annales Polonici Mathematici},
     volume = {116},
     year = {2016},
     pages = {101-144},
     zbl = {06574974},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3540-11-2015}
}
Anna Kamont. Asymptotic behaviour of Besov norms via wavelet type basic expansions. Annales Polonici Mathematici, Tome 116 (2016) pp. 101-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap3540-11-2015/