We establish an equidistribution result for the pull-back of a (1,1)-closed positive current in ℂ² by a proper polynomial map of small topological degree. We also study convergence at infinity on good compactifications of ℂ². We make use of a lemma that enables us to control the blow-up of some integrals in the neighborhood of a big logarithmic singularity of a plurisubharmonic function. Finally, we discuss the importance of the properness hypothesis, and we give some results in the case where this hypothesis is omitted.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-3-1, author = {Fr\'ed\'eric Protin}, title = {\'Equidistribution vers le courant de Green}, journal = {Annales Polonici Mathematici}, volume = {113}, year = {2015}, pages = {201-218}, zbl = {06493358}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-3-1} }
Frédéric Protin. Équidistribution vers le courant de Green. Annales Polonici Mathematici, Tome 113 (2015) pp. 201-218. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-3-1/