On the lattice of polynomials with integer coefficients: the covering radius in Lp(0,1)
Wojciech Banaszczyk ; Artur Lipnicki
Annales Polonici Mathematici, Tome 113 (2015), p. 123-144 / Harvested from The Polish Digital Mathematics Library

The paper deals with the approximation by polynomials with integer coefficients in Lp(0,1), 1 ≤ p ≤ ∞. Let Pn,r be the space of polynomials of degree ≤ n which are divisible by the polynomial xr(1-x)r, r ≥ 0, and let Pn,rPn,r be the set of polynomials with integer coefficients. Let μ(Pn,r;Lp) be the maximal distance of elements of Pn,r from Pn,r in Lp(0,1). We give rather precise quantitative estimates of μ(Pn,r;L) for n ≳ 6r. Then we obtain similar, somewhat less precise, estimates of μ(Pn,r;Lp) for p ≠ 2. It follows that μ(Pn,r;Lp)n-2r-2/p as n → ∞. The results partially improve those of Trigub [Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962)].

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:280296
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-2-2,
     author = {Wojciech Banaszczyk and Artur Lipnicki},
     title = {On the lattice of polynomials with integer coefficients: the covering radius in $L\_p(0,1)$
            },
     journal = {Annales Polonici Mathematici},
     volume = {113},
     year = {2015},
     pages = {123-144},
     zbl = {1336.41003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-2-2}
}
Wojciech Banaszczyk; Artur Lipnicki. On the lattice of polynomials with integer coefficients: the covering radius in $L_p(0,1)$
            . Annales Polonici Mathematici, Tome 113 (2015) pp. 123-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-2-2/