Let ℱ be a family of zero-free meromorphic functions in a domain D, let n, k and m be positive integers with n ≥ m+1, and let a ≠ 0 and b be finite complex numbers. If for each f ∈ ℱ, has at most nk zeros in D, ignoring multiplicities, then ℱ is normal in D. The examples show that the result is sharp.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-7, author = {Jun-Fan Chen}, title = {Normality criteria for families of zero-free meromorphic functions}, journal = {Annales Polonici Mathematici}, volume = {113}, year = {2015}, pages = {89-98}, zbl = {06477203}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-7} }
Jun-Fan Chen. Normality criteria for families of zero-free meromorphic functions. Annales Polonici Mathematici, Tome 113 (2015) pp. 89-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-7/