We consider nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition. We investigate the structure of the set of bifurcation points, and study the behavior of two families of continua of nontrivial solutions of this problem contained in the classes of functions having oscillation properties of the eigenfunctions of the corresponding linear problem, and bifurcating from the points and intervals of the line of trivial solutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-6, author = {Ziyatkhan S. Aliyev and Gunay M. Mamedova}, title = {Some global results for nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition}, journal = {Annales Polonici Mathematici}, volume = {113}, year = {2015}, pages = {75-87}, zbl = {06477202}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-6} }
Ziyatkhan S. Aliyev; Gunay M. Mamedova. Some global results for nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition. Annales Polonici Mathematici, Tome 113 (2015) pp. 75-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-6/