We consider the Cauchy problem for a nonlocal wave equation in one dimension. We study the existence of solutions by means of bicharacteristics. The existence and uniqueness is obtained in topology. The existence theorem is proved in a subset generated by certain continuity conditions for the derivatives.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-5,
author = {Adrian Karpowicz and Henryk Leszczy\'nski},
title = {On the Cauchy problem for hyperbolic functional-differential equations},
journal = {Annales Polonici Mathematici},
volume = {113},
year = {2015},
pages = {53-74},
zbl = {06477201},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-5}
}
Adrian Karpowicz; Henryk Leszczyński. On the Cauchy problem for hyperbolic functional-differential equations. Annales Polonici Mathematici, Tome 113 (2015) pp. 53-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-5/