We consider the Cauchy problem for a nonlocal wave equation in one dimension. We study the existence of solutions by means of bicharacteristics. The existence and uniqueness is obtained in topology. The existence theorem is proved in a subset generated by certain continuity conditions for the derivatives.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-5, author = {Adrian Karpowicz and Henryk Leszczy\'nski}, title = {On the Cauchy problem for hyperbolic functional-differential equations}, journal = {Annales Polonici Mathematici}, volume = {113}, year = {2015}, pages = {53-74}, zbl = {06477201}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-5} }
Adrian Karpowicz; Henryk Leszczyński. On the Cauchy problem for hyperbolic functional-differential equations. Annales Polonici Mathematici, Tome 113 (2015) pp. 53-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-5/