We consider generalized m-quasi-Einstein metric within the framework of Sasakian and K-contact manifolds. First, we prove that a complete Sasakian manifold M admitting a generalized m-quasi-Einstein metric is compact and isometric to the unit sphere . Next, we generalize this to complete K-contact manifolds with m ≠ 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-3, author = {Amalendu Ghosh}, title = {Generalized m-quasi-Einstein metric within the framework of Sasakian and K-contact manifolds}, journal = {Annales Polonici Mathematici}, volume = {113}, year = {2015}, pages = {33-41}, zbl = {1337.53040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-3} }
Amalendu Ghosh. Generalized m-quasi-Einstein metric within the framework of Sasakian and K-contact manifolds. Annales Polonici Mathematici, Tome 113 (2015) pp. 33-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap115-1-3/