Let H() denote the space of all holomorphic functions on the unit ball ⊂ ℂⁿ. Let φ be a holomorphic self-map of and u∈ H(). The weighted composition operator on H() is defined by . We investigate the boundedness and compactness of induced by u and φ acting from Zygmund spaces to Bloch (or little Bloch) spaces in the unit ball.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap114-2-1,
author = {Yu-Xia Liang and Chang-Jin Wang and Ze-Hua Zhou},
title = {Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball},
journal = {Annales Polonici Mathematici},
volume = {113},
year = {2015},
pages = {101-114},
zbl = {06451622},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap114-2-1}
}
Yu-Xia Liang; Chang-Jin Wang; Ze-Hua Zhou. Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball. Annales Polonici Mathematici, Tome 113 (2015) pp. 101-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap114-2-1/