Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball
Yu-Xia Liang ; Chang-Jin Wang ; Ze-Hua Zhou
Annales Polonici Mathematici, Tome 113 (2015), p. 101-114 / Harvested from The Polish Digital Mathematics Library

Let H() denote the space of all holomorphic functions on the unit ball ⊂ ℂⁿ. Let φ be a holomorphic self-map of and u∈ H(). The weighted composition operator uCφ on H() is defined by uCφf(z)=u(z)f(φ(z)). We investigate the boundedness and compactness of uCφ induced by u and φ acting from Zygmund spaces to Bloch (or little Bloch) spaces in the unit ball.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:281067
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap114-2-1,
     author = {Yu-Xia Liang and Chang-Jin Wang and Ze-Hua Zhou},
     title = {Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball},
     journal = {Annales Polonici Mathematici},
     volume = {113},
     year = {2015},
     pages = {101-114},
     zbl = {06451622},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap114-2-1}
}
Yu-Xia Liang; Chang-Jin Wang; Ze-Hua Zhou. Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball. Annales Polonici Mathematici, Tome 113 (2015) pp. 101-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap114-2-1/