Generalized P-reducible (α,β)-metrics with vanishing S-curvature
A. Tayebi ; H. Sadeghi
Annales Polonici Mathematici, Tome 113 (2015), p. 67-79 / Harvested from The Polish Digital Mathematics Library

We study one of the open problems in Finsler geometry presented by Matsumoto-Shimada in 1977, about the existence of a concrete P-reducible metric, i.e. one which is not C-reducible. In order to do this, we study a class of Finsler metrics, called generalized P-reducible metrics, which contains the class of P-reducible metrics. We prove that every generalized P-reducible (α,β)-metric with vanishing S-curvature reduces to a Berwald metric or a C-reducible metric. It follows that there is no concrete P-reducible (α,β)-metric with vanishing S-curvature.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:280991
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap114-1-5,
     author = {A. Tayebi and H. Sadeghi},
     title = {Generalized P-reducible ($\alpha$,$\beta$)-metrics with vanishing S-curvature},
     journal = {Annales Polonici Mathematici},
     volume = {113},
     year = {2015},
     pages = {67-79},
     zbl = {1327.53100},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap114-1-5}
}
A. Tayebi; H. Sadeghi. Generalized P-reducible (α,β)-metrics with vanishing S-curvature. Annales Polonici Mathematici, Tome 113 (2015) pp. 67-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap114-1-5/