Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions
S. Sivasubramanian ; R. Sivakumar ; S. Kanas ; Seong-A Kim
Annales Polonici Mathematici, Tome 113 (2015), p. 295-304 / Harvested from The Polish Digital Mathematics Library

Let σ denote the class of bi-univalent functions f, that is, both f(z) = z + a₂z² + ⋯ and its inverse f-1 are analytic and univalent on the unit disk. We consider the classes of strongly bi-close-to-convex functions of order α and of bi-close-to-convex functions of order β, which turn out to be subclasses of σ. We obtain upper bounds for |a₂| and |a₃| for those classes. Moreover, we verify Brannan and Clunie’s conjecture |a₂| ≤ √2 for some of our classes. In addition, we obtain the Fekete-Szegö relation for these classes.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:280248
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-3-6,
     author = {S. Sivasubramanian and R. Sivakumar and S. Kanas and Seong-A Kim},
     title = {Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions},
     journal = {Annales Polonici Mathematici},
     volume = {113},
     year = {2015},
     pages = {295-304},
     zbl = {1332.30029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-3-6}
}
S. Sivasubramanian; R. Sivakumar; S. Kanas; Seong-A Kim. Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions. Annales Polonici Mathematici, Tome 113 (2015) pp. 295-304. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-3-6/