Existence of solutions for a class of Kirchhoff type problems in Orlicz-Sobolev spaces
Nguyen Thanh Chung
Annales Polonici Mathematici, Tome 113 (2015), p. 283-294 / Harvested from The Polish Digital Mathematics Library

We consider Kirchhoff type problems of the form ⎧ -M(ρ(u))(div(a(|∇u|)∇u) - a(|u|)u) = K(x)f(u) in Ω ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω where ΩN, N ≥ 3, is a smooth bounded domain, ν is the outward unit normal to ∂Ω, ρ(u)=Ω(Φ(|u|)+Φ(|u|))dx, M: [0,∞) → ℝ is a continuous function, KL(Ω), and f: ℝ → ℝ is a continuous function not satisfying the Ambrosetti-Rabinowitz type condition. Using variational methods, we obtain some existence and multiplicity results.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:286230
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-3-5,
     author = {Nguyen Thanh Chung},
     title = {Existence of solutions for a class of Kirchhoff type problems in Orlicz-Sobolev spaces},
     journal = {Annales Polonici Mathematici},
     volume = {113},
     year = {2015},
     pages = {283-294},
     zbl = {1326.35105},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-3-5}
}
Nguyen Thanh Chung. Existence of solutions for a class of Kirchhoff type problems in Orlicz-Sobolev spaces. Annales Polonici Mathematici, Tome 113 (2015) pp. 283-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-3-5/