We consider Kirchhoff type problems of the form ⎧ -M(ρ(u))(div(a(|∇u|)∇u) - a(|u|)u) = K(x)f(u) in Ω ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω where , N ≥ 3, is a smooth bounded domain, ν is the outward unit normal to ∂Ω, , M: [0,∞) → ℝ is a continuous function, , and f: ℝ → ℝ is a continuous function not satisfying the Ambrosetti-Rabinowitz type condition. Using variational methods, we obtain some existence and multiplicity results.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-3-5, author = {Nguyen Thanh Chung}, title = {Existence of solutions for a class of Kirchhoff type problems in Orlicz-Sobolev spaces}, journal = {Annales Polonici Mathematici}, volume = {113}, year = {2015}, pages = {283-294}, zbl = {1326.35105}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-3-5} }
Nguyen Thanh Chung. Existence of solutions for a class of Kirchhoff type problems in Orlicz-Sobolev spaces. Annales Polonici Mathematici, Tome 113 (2015) pp. 283-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-3-5/